Page 2


The Australian ADF UL1700L version typically uses a Werner & Co winch. Name plate data interpretation: breaking force 21,404 kg and Tractive force 6403 kg. It is designed for 14mm steel cable.

Control knobs on the winch. My understanding of how they work:

  • Passenger side knob engages gearbox or allows free wheeling in order to drag cable out by hand. Pull out the knob to disengage winch. WARNING: I discovered that it is not suited as an emergency disconnect, because once the cable is under tension, you may/will not be able to pull it out.
  • Drivers side knob is a friction adjustment. Wind it in for friction to slow the drum when paying out cable by hand. Loosen when winding in the winch.

Note: I imagine it would not be helpful to have the friction knob wound right in whilst operating the PTO drive.

I found that it was best to remove the winch completely, to work on it.

The winch is held on by 2 large pins (see photo below). The pins came out easily enough, but after about 30 oddyears it was not so easy to remove the winch from the vehicle (needed a 6' digging bar to lever it off the pegs). 

Don't forget to check the winch gearbox oil.

Drive Chain

When I opened the drive chain case (on drivers side), about 1 litre of water came out. The inside surface and chain had some surface rust mixed in the grease (nothing of consequence however). A large 'O' ring is used to seal the side casing but obviously not intended to be a watertight seal on the rough casting. The chain operates a cable indexing slider to ensure cable winds evenly across drum. A gear puller is required to remove the large RH cog. After cleaning out, I painted the inside,  lithium sprayed the chain, applied sealant to the 'O' ring and installed a drain plug in the base of the case.


The connection between the rear of the winch and the vehicle PTO shaft, is a form of flexible couling combined with a torque overload clutch feature. The photo below shows the 4 ball bearings used in the overload clutch. I pulled it down as far as I could, cleaned it up, greased, repainted and resealed the cover.


There are four M16 high tensile grade 10.9 main bolts holding the winch brackets in place. Unfortunately, as the front of the chassis box channel is open, all the dirt and crud in the world enters it, and when wet, the mud starts to corrode the bolts that are threaded into the chassis. The risk with removing bolts that have lain undisturbed for eons, is that you can strip them or shear them off. I was convinced I had galled one of the M16 grade 10.9 bolts holding the winch brackets in place. I had to use a 1" drive, force multiplier to wind them out, as even a 1m long bar would not budge them. As shown in the first photo below, they were corroded and no longer fit for service. This is the likely typical condition of these bolts for all of these vehicles of similar age, and I consider it a mandatory check if the winch is going to see any service. Obtaining a replacement set of bolts should have been easy, but what do you know, I can only buy full boxes or buy from Mercedes. Seems grade 10.9 is rare here.

Some of the bolts securing the winch mount brackets are in good nick and can cleaned up with a brass wire brush, others, the threads are damaged beyond safe re-use. Note; in winding them out there was the risk of galling of the thread. Once out, I clean up the threaded holes by spraying with penetrating oil, ran a tap to clean up the corroded thread, sprayed with penetrating oil again and when refitting bolts, using anti-seize. Not a good idea to use bolts again where the thread is deformed, as it may stuff up the threaded anchor when refitting. The two structural bolts in the first photo have slightly damaged threads, the shanks are corroded and therefore need replacing. Make sure you replace with the right grade of bolt. Most are either 10.9 or 8.8 grade.


I looked at 14mm steel cable versions (numerous constructions and materials). They are not cheap and have some disadvantages, such as: can be kinked, strands can stick out (severe injury risk), cannot be repaired in the field without special tools, expensive to get cleaned and can stretch and snap back (injury/death risk).

I looked at synthetic, i.e. Ultra High Modulus Polyethylene (UHMWPE). Dyneema is one of many well known brand names for UHMWPE. It is available pre-terminated or you splice an eye (soft or hard) on it yourself. Note: The open teardrop eye is designed for steel cable, whereas the closed donut eye is used for synthetic ropes. The reason: the teardrop open ends can cut away at the rope and fray it.

Grades: SK99 has 20% strength advantage over SK78 and crucially retains the same elongation and creep characteristics as SK78 – out-gunning SK90 on all levels!  SK99 has an unmatched strength to weight ratio. SK90 and 99 is expensive and as I am always looking for best value for money, I went for the middle of the price and performance range: SK78. However, if you expect to do lots of winching, one might wish to consider SK99? 

Advantages of UHMWPE:

  • Will float on water
  • Can be easily cleaned. 
  • Depending on the grade, it can be stronger than steel for the same diameter. 
  • Excellent fatigue resistance (cyclic bending).
  • Excellent  UV and chemical resistance.   
  • Good abrasion resistance.
  • Depending on grade, no snap back risk.
  • But most of all, Can be slice jointed and re-terminated in the field by hand

Negatives for UHMWPE: 

  • Exhibits creep, i.e. elongation over time.  Creep can often have a negative effect on a rope’s performance and strength when ropes are subjected to high loads for extended periods. 
  • Can melt at relatively low temperatures (140○C), so don't let the drum get too hot.
  • Susceptible to cuts, it’s not uncommon to have to smooth the drum or fairlead, will likely need an abrasion sleeve. I only have heatshrink, and that might have to do?

From much reading on the internet, I have three suggestions: Cleaning synthetic rope after each as soon as possible, checking the drum temperature when in use (pour a little water on it if it starts getting too hot) and making sure that the rope is not exposed to UV whilst stored on the drum. This implies a cover over the winch or in the case of the standard Werner winch, I have made a HDPE cover plate to fit into the opening on the top of the winch. In order to bend to the 250mm diameter, I had to heat it up. 

Note: I purchased 30m of 14mm Dyneema but when it arrived, its larger in diameter. Its more like 20mm when not under tension. I suspect it pulls down to 14mm under tension. This could be a problem when I go to try and wind it onto the drum, as I will need to try and keep it under tension? Also, whilst the 'eye' I purchased is for 14mm rope, it is slightly too small. I should have purchased an eye for 20mm rope. I spliced an eye at the end according to the internet instructions. Looked at quite a few internet sites and all basically saying the same thing. I then put 2 layers of heavy heatshrink over the splice and for the last 1m.

Installing synthetic rope for the first time:

I had someone take the tension on the cable, as I wound it in.

1st problem; the indexer is too slow for this fat rope, and started overlaying some of the layers. This is likely due to the Dyneema actually being thicker than 14mm (maybe 14mm when at maximum tension, but about 18mm when tensioned with only body weight. Managed to get it all on without serious problems.

2nd problem; I hooked the end of the rope up near the winch to keep it from flopping around. Started the winch to just take up the tension, jumped out the cab and just as I was needing to stop the winch, I found I could not pull the side disengagement knob out (even though I had tested it numerous times just beforehand). The winch kept going and the end of the cable tore off. Well, not quite, my splice pulled apart luckily.

Lessens learnt. (thank you God).

1) Synthetic rope is completely not suited to this type of winch. It was designed only for steel cable. The drum has guide flutes along it at the exact spacing and size of the 14mm cable. These will cut into the synthetic rope if the rope does not sit in each groove neatly. As the rope is thicker than the steel cable when not under tension, it will eventually ride up over the sharp edges of the flutes and eventually be damaged. It will also not lay onto the drum evenly as the indexer operates at a rate to suit the thinner steel cable. Good chance it will all bunch up at one end, potentially resulting in jamming.

2) Maybe something wrong with my splice technique, or maybe it simply failed at the weakest point (which is usually a splice). I need to get the Dyneema professionally spliced.

3) This winch is not meant to be operated without someone at the controls inside the cab. I mistakenly thought that I could operate the winch from the side disengagement knob. It's not meant for that. Apparently once the cable is under some tension, the knob cannot be easily pulled out. Seems that at least 2 people are needed to operate the winch safely. One inside the cabin at the controls, and at least one outside checking that the cable is winding onto the drum evenly. I have seen a few cables destroyed by not having someone watch the drum and the cable being laid onto the drum unevenly and jamming up. Also ideally, have someone else to watch the overall winching activity.

I will save the Dyneema for an extension rope. I have since bought the correct steel rope, 30 meters of 36 strand for flexibility (due to small diameter of drum). Had an eye swaged on one end and the other end braised to stop strands splaying. Maintenance manual recommends to be unwound and treated (grease) on a regular basis to prevent everything rusting up. I'm going for INOX simply because Bunnings sell it conveniently and because grease picks up all the muck. Rocol and Lanotec are apparently good also.

It weighs 26kg and I have yet to get it on to the drum.  Turn the drum by hand until the indexer is fully at the (passenger) side. There is a wedge shaped hole in the drum. I understand that one pokes the cable through from the small side of the hole in the drum, drop in the wedge, tap the wedge down firmly (jamming the rope) and hope that as I put some tension on the cable, the wedge will lock the cable in sufficiently for the cable to wind onto the drum properly. I plan to mark the cable with paint at about 6 turns or more (limit of unwind).


On opening the origional headlights, one headlight was well sealed, and in good condition, the other had a damaged housing and decades of crud had got in there and stuffed everything due to corrosion and melted wires etc. I would have liked to replace the headlights with a nice LED set, but they will cost ~US$800 and more. I evaluated many of the modern 90mm LED lights (most IP67 so not water proof). The IP69 military versions are very expensive but can, according to the datasheet, withstand 3m deep immersion continually. Some of the 90mm modules have separate high low beam modules and some have both in the same housing. These style are commonly used here on buses and progressively being used in many of the newer model cars. A mounting plate is required to adapt for them. The ECE (Economic Commission for Europe) regulation stamp means (in theory) that a lamp can be used in European countries and most industrialised ones outside of the EU (USA excluded) and provided the lights are designed for the correct driving side of the road. These ECE provisions and standards are meant to allow for products type approved by one country, to be used across Europe including Australia. 

General advice I have received is that, they need to be ECE approved and within the norms of the existing standards.

After all this, I considered that its just too hard to comply with the very chaotic regulations with no conformity across the country. LED lights emit a pure spectrum and its very difficult to equate colour and intensity to traditional incandescent light standards. The railways in NSW were amongst the first in the world to study (in conjunction with NSW University) and approve LED signal lights two decades ago. Whilst I spent many years helping set railway standards for LED lights, I am going to re-use my existing poor mans technology i.e. incandescent headlights. Its just easier to comply that way, even if I cannot take advantage of the better lighting technology available.

I ended up refurbishing the alloy casings painting inside and out, and replaced one of the Hella reflectors.

Painting the Cab


  • Cab had to be mostly stripped out to repaint. I've gone for Toyota French Vanilla White, as its commonly available. 
  • I'm leaving the dash in place, which means that behind the dash will remain drab green (but no one will see it).
  • Inside door panels coated with rust proofing and sound proofing.
  • Underside  heavy coated with Crommelin water proofing pond sealer.
  • Rubber roof hatch seal is a bugger to re-install. I had to make up a special hook tool (see photo).


I tried 4 sizes of spray gun before I realised that I simplywill never make a good spray painter. Started painting the exterior over Easter break 2019. A difficult job outdoors in the wind. Sun and overnight condensation means that I have to keep replacing the masking tape in areas, as it tends to come away easily. One needs to lightly wet-sand down between coats due to grit etc blowing on to the wet paint. I ended up using a lot more paint this way also, as half of it blows away even when I wait between gusts to do a few seconds of spraying.  Use a small gun to get into the nooks and folds, as using a large gun can lead to more runs. Should have looked up air pressure before I started. I'm not very happy with the result. I assumed that my gravity feed gun ran at the same pressure as the vacuum ones. I ended up applying the first coat at twice the pressure it should have been. This resulted in narrow bands of orange peel finish. Used 4L for first coats. Waited a month and lightly sanded down and applied final coat using only about 20psi (instead of the wrong 45psi). 

I also found that if you leave masking tape in place for a few months or more, to bake in the sun, its almost impossible to remove. Some of it on the rubber around the windshield will not come off. Maybe over time it will degrade.

24-7-19 lowered the cab, fitted batteries under the bonnet, tested the grill and bonnet for clearance (only a few mm clearance). Battery is almost up against the air cleaner . I don't expect to replace the engine air filter very often. To mitigate against this, I have fitted a pre-filter to the snorkel to remove most of the dust. These however, only tend to work well when the vehicle is driving at speed.

Interior Furnishings

The roof lining had to come out. It was water damaged and the particle board support system was all buckled. It had to come out anyway, to paint, to check roof light wiring, to run camera monitor cable, to fit sound and heat proofing membranes and to fit air conditioner on roof. I had to replace one particle board panel, use  tape and resin to repair broken sections and used large head rivets to replace the rivets that had pulled through. It was in a terrible mess. Now at the upholsterers being re-covered.

Seat belts were sent off to a Melbourne company to be re-terminated and parts replaced.

Lining door boards, door arm rests, sun visors, handles etc all re-stained black, so as to look new.

Sound Insulation

June 2021, got around to starting to install some sound proofing. So far, have installed only the butyl rubber sheets that have silver backing. The thick mass rubber sheeting is very thick at about 1/2 " and will take a lot of work to try and fix it down properly.

Cab Fan

Started to dismantle the cab air blower system ducting under the bonnet.

Tricky job. The fan casing (has three fasteners) would not come out until I unbolted the horizontal ducting running along under the windscreen (in the engine compartment). Horizontal duct has three fasteners and needs to be slid along towards the drivers side as far as it will go, before the fan assembly will come out. See 1st photo showing gap needed between horizontal ducting and fan in order to remove the fan assembly. Photo 2 shows removal of casing clips.

Good thing that I did open up the fan, as the fan blade was cracked in two places. It had started to flex out so much that it had worn a hole through the fan casing. The army mechanics just bogged up the hole and did not fix the broken fan problem. I tried to remove the fan blade from the shaft, but no luck. I replaced the whole assembly with the newer design (see photo 4 below). Better air flow.

The ducting would not come free, and after some hours of cussing, I eventually had to rip the duct out with brute force. I later discovered that someone had used a slightly longer screw on the window water jet handle on the outside and the screw was protruding down onto the horizontal ducting jamming it.

Note: I purchased (at auction) half a dozen good fans. So I still have some for sale on ebay, all tested and all going very cheap.

Cab Air-Conditioning - As Installed

I've gone for cooling only (not reverse cycle), because the vehicle already has a hot water heater system. Installing the compressor where I did, was a very complicated job.  The advantage of it here (rather than just above the bash plate) is that it will not get totally immersed when river crossing. Unfortunately, my design to locate the evaporator at the front of the cabin (under the centre of the front dash console) was flawed because the gear shift lever hit it, so it is now located on the rear wall of the cabin between the seats. I fitted a heavy duty system to cater for the hot outback, I selected:

  • wall mounted Red Dot Evaporator R6840024P
  • roof mounted Red Dot Condenser (needs to be small so as not to foul the roof hatch) R6160024P
  • Sanden Compressor (located in front of the turbo in place of the fan belt idler tensioner pulley)

I bought the bits all from different companies across the US for the best prices. The risk in doing this, is no warranty. One can install an all-in-one roof top unit (electric driven compressor), but as the roof is ribbed, cutting out a large hole for the air grill will increase the risk of  water leaks. I have decided its inefficient to change mechanical to electrical back to mechanical, so for me, its a mechanical compressor direct off the crank (via vee-belt) rather than an all electric arrangement on the roof.

The most difficult part was making up a heavy duty adjustable mounting bracket to suit the compressor. Very tight fit. Discovered that the belt touched the power take-off shaft below it, so I had to add a small 40mm (VW) idler pulley to push it away. Lots of ad-hoc bespoke mods needed to get it right.  Its July 2019, electrics done and hoses are now run and holding vacuum. It's end of 2019, system now charged and working great.

Note: Unidan has a complete air conditioning kit available and their evaporator unit fits very nicely under the centre of the front dash console. Its priced quite reasonably, as I soon found out that buying my own parts ended up costing me just as much or more, (due to import freight costs). If I had my time around I would probably just buy Dans kit, but you live and learn. My system does however allow me to keep the floor space clear in the middle of the cabin for the dog to rest and to easily step from one side of the cab to the other.

Exhaust & Air Inlet


 I replaced the turbo (just in case it had some wear and for some peace of mind) for a rebuilt unit. Last thing you want is turbo blades fragmenting. I found that MTA, Denco Diesel and Unidan prices are all about the same at about A$1k exchange.

It was a nightmare to get it off and a nightmare to fit it up again. Took 1/2 a day to get the old one off and the same time to put the new one back. No way of getting a torque wrench in there, so hopefully nuts are done up right. The coating I used on the cast iron parts is an industrial grade heavy zinc paint (very cheap and works fine). I have tested it for about 5 years on my Land Rovers exhaust manifold and it has held up fine. Much cheaper than ceramic coating, but for me its simply about a tidy look (I don't like surface rust, even though its not structural). 

Rather than drill the turbo or the exhaust manifold, to fit the exhaust gas temperature probe, I drilled and tapped the exhaust casting after the turbo. There is a flat spot on the casting perfect for this (see first photo with the fitting in place).

Before starting a new turbo make sure that there is oil in it. Check with suppliers recommendations.

I did the following: 

  • Changed engine oil and filters,
  • Put catch bowl under turbo drain,
  • Before fitting oil inlet pressure pipe, fill top with new oil (should drip out the bottom),
  • Fit oil inlet pressure line (with new gasket and copper washers),
  • Start engine at idle (do not rev) turn off after about 5 seconds,
  • Check oil is coming out of turbo drain,
  • Fit drain fitting with new gasket and drain hose,
  • Start engine at idle (do not rev). Leave to run and inspect for any leaks,
  • then hope for the best.

Exhaust Pipe.

I installed 3.5" stainless. I could not easily get all parts in 316, so used 304 for the straight bits. 

I tack welded the first meter to clear the engine bay. It is bad enough trying to fit 3.5", but it would be almost impossible to fit 4" (and 4" is overkill anyway) following the same route as the original exhaust. You need to try to follow the original route otherwise it will be exposed to damage. It is not possible for me to exactly copy the old section, so I used it as a rough guide so as to order the right elbows etc. Its a very tight squeeze with only about 3mm gap left between structural members. 

Gasket A302490008001 (from MB). The elbows are thick wall 316 sanitary fittings (used in nuclear reactor laboratories etc), and a thicker material than normally used for exhaust pipes.  I marked everything by eye and cut angles by eye using a 14" drop saw. Note: A 14" saw is only going to be able to cut all the way through (in one cut) when the blade is new. So to cut 3.5" and 4" pipe, you need a 16" friction saw. The flange however, had to be made to my drawing and I fitted an adaptor (3" to 3.5") to it. I tried to get the local exhaust company to do the full welds, but they did not have the expertise to do it. Purging for TIGis essential otherwise oxide forms on the inside behind the welds. If purging is not done during welding, this oxide is a source of later corrosion, weakness and breaks up the gas flow. This was my first time working with thin wall stainless. Not easy to ensure perfect flush butt tack welds. Every segment needed the section to be bolted back up to mark for welding and for cuts/angles, and taken off again.  A big job, as it took a lot more than one day just to do this simple task. 

I gave up trying to find a reasonable priced muffler anywhere in the world (I should go into the muffler business). One option was to get one custom made, but this too would be very expensive, with no guarantees of a decent dbA reduction. I've had to bite the bullet and save up for a proper Cowl muffler in the end (a disk muffler would have been the best, but price was insane). It arrived from the US in October 2018. A stainless muffler was too expensive, so I ended up going for thick mild steel (it was still A$1000 just for the muffler !!) and painted it with white high temperature ceramic paint. Should last my lifetime (hopefully). Added my own mounting bracket (as the standard bracket is about A$250). Unfortunately the lowest item hanging down is the exhaust pipe under the muffler and its what is likely to get wiped out first. Probably not the best of designs but I'll see how it goes and modify it later if needed. Added a drain at the lowest point in case water gets in at river crossings ?  Though I noticed that most Unimogs have exhausts much lower and more exposed, so I don't feel so bad now.

Full welding of the stainless was done by Beauchamp Metals here in Sydney. Great job and reasonable price. Can't recommend them enough.

After all installed, and vehicle lowered to the ground, I realised I made a mistake. The section of exhaust after the turbo outlet casting) where it comes down from the engine compartment, has insufficient clearance from the front torque tube wheel strut connection. The torque tube is likely to come up and hit the exhaust when I go over a bump and the suspension bottoms out. The end result might be ripping the turbo off the exhaust manifold and ensuing engine destruction (as bits of metal get sucked into it). Its now June 2020, and I have pulled it all out and chopped it up to re-make it (again). Not a small task with the cab not raised.  The yellow line below shows the path the tube should have taken. Its back in, and better, but clearances still not perfect, as now the sway bar might hit it with extremes in suspension positions.


Fitted the Unidan Kit. Last picture shows the cut out required in the lower part of the grill to accommodate the radiator. A fair bit of work in trial and error cutting enough out of the grill so as not to rub on the intercooler.  All worked well.

Exhaust Stack

Quite a bit of work in building fully stainless steel exhaust stack and sourcing value for money parts.

Dec 2018. Decided that I needed to exhaust smoke up and away, so I changed the arrangement from a low level outlet pointing downwards, to a smoke stack. I went for 4" polished stainless steel (4" is an odd size and difficult to find). The heat shield to suit 4" pipe is almost impossible to find (as exhaust stack pipe normally starts at 5"). I made my own by slicing up a wood heater flue heat shield from Bunnings. Tacked the exhaust stack into place, in order to make up the supporting frame at rear of cab. A frame from the chassis (NOT from the tray and NOT from the cab) is required to support the weight.

In order to allow flex between chassis and engine, a bellows fitting was required at the inlet to the muffler and on the outlet of the muffler. Time will tell if there is enough flex in the system. 

Fuel Pump Settings

Minor horsepower increase is possible by adjustment to the Bosch mechanical fuel pump. Its something that an only be done (in my view) with the cab in the raised position. 

Linden Martin has provided useful details in Unimog Owners NSW Facebook site, on how to Un-Billycart an Ex ADF Mog Parts 1 and 2.. I hope to make the OM352a adjustments (basically over-fueling) next time I raise the cab, and I hope to provide a summary of how its goes here.


I purchased a dozen used spare fuel injectors. I'm hoping that they only need a clean, spray pattern and pop off pressure checked, if I decide to replace the existing ones.

Air Horns

I fitted some 82 class locomotive air horns underneath out of sight (no point buying a fancy chrome set just because they look nice). But I dropped one, deformed the bell and hairline cracks in the bell. So I thought, why not solder them up using the TIG. Set the TIG to pulse and lowest setting of 1 Amp to try lead soldering. Blew a large hole in it!!. Back to the simple traditional electric soldering iron to repair it. Hours of work. They still look battered but they work ok. Goes to show you that its trial and error when you are learning-as-you-go (I should have tried on a piece of paper thin brass sheet beforehand, but I'm impatient). These horns have the advantage of being robust and able to handle higher air pressure than most. They also tend to be loud. I have them set up with a large bore solenoid (and isolation switch). If I quickly toot the normal electric horn only the electric horn makes a noise. If I hold down the button, everything comes on. This is because the electric horn responds very quickly, whereas the mass of the solenoid shuttle takes a little longer to move and for the air to compress at the air horn diaphragm. Hence by time I have removed my finger from the button for a quick toot, not enough air reaches the air horns to make a noise. If you are worried about it, install a delay timer to ensure that there is a distinct delay between the electric horn and air horns.

Air Pre-Cleaners

I originally ordered two Enginaire style aluminium air cleaners, but got ripped off by a fake company. They never arrived. I ended up purchasing two TopSpin plastic style. They are not as strong as metal but have the big advantage of being lighter. All worked out for the better in the end (God works in mysterious ways ). It's unlikely that the cab air inlet snorkel pre-cleaner will be able to do much due to the much slower air speed, but its one way of carrying around a spare, just in case the engine inlet pre-cleaner gets knocked off on a low branch. This item only comes into its own in dusty locations such as bull dust outback roads, and the maker claims something like 90% dust extraction. This means that the main filter should last much longer. The Topspin needs a collar adaptor ring to make it fit. I used 5" PVC sewer pipe cut offs. As the clamps alone may not be sufficient to hold the pre-cleaners in place, I also drilled and fitted screws through each collar.

Tool Boxes & Water Tanks

I designed the (located front of rear wheel) heavy duty tool boxes mid July 2019. They were beautifully made (4mm marine aluminium), by Beauchamp Metals. The remaining future boxes are expected to sit behind the wheels and will be for a generator and a water tank, but I will have to wait until I sort out the living module before these can be designed.

June 2021, added a couple of rear water tanks.

Battery Trays

A friend here in Sydney with a couple of Unimogs, gave me the idea of putting both batteries under the bonnet in front of the air filter.

The advantage is that it means I can get rid of the existing heavy battery box and fit my long range fuel tanks. The disadvantage however of this mount arrangement, is that the top tray and battery have to be prior removed before the air filter can be changed or the cab tilted. But as the generator and other connections need to be removed to tilt the cab anyway, a few more items does not make too much difference. I figure that the main air filter should not need changing too often especially as I have a pre-filter installed on the top of the snorkel.

The upper tray is shown in the photo. The top tray was a nightmare, as the air cleaner was behind it and the grill in front. Much trial and error. It only just fits the battery size I currently have. Any bigger battery and I've a big problem, as I will have to modify the tray again.

Maintenance Manuals

There are three main sources that I use:

1) Under the ADF  freedom of information act, I applied to obtain various maintenance information which they agreed, but rather than just provide it directto me (and I disseminate it), they arranged for AFM to make available the information on their web site.  Its likely a good idea to download copies of manuals etc, in case their site closes one day. 

2) Workshop Manual and Parts List. I use the free VM-Ware Player (virtual Windows XP Workstation) to run the applications. I purchased the following applications from 'emanualonline':

- Mercedes_2014_WSM (workshop manual) and

- Mercedes_2014_EPC (electronic parts catalogue).

Note that these two applications can be quite difficult to use. You will need to plug in your VIN i.e. WDB435  ...................... . After that you can select the category you are interested in. Unfortunately not all parts for the ADF Unimog versions are listed, but the far majority of standard parts are there.

3) Internet Forums:

  • Mercedes Benz Forum

Canvas Covers

Found a good local upholsterer, who has the correct drab olive military colour canvas. He made my mast light cover and air conditioner cover  at the right price.  I recommend A L S Upholstery at 436 The Boulevarde, Kirrawee NSW 2232, Australia  as value for money. Once the winch cover is made, I'll ask him to keep the design on hand in case others want to order covers for their winch. A cover is essential as it helps keeps crap from getting into the cable and especially if using Dyneema rope, itkeeps the sun off it.

If the main canvas cover over the rear tray has tears and small holes in it, you may want to repair it. It's a poly something-or-other weave, with vinyl coating both sides. Its normally thermally welded, using heated implements. The cheapest way is to chemically glue repair patches to the inside (where they cannot be seen). You will need to take the tarp off the truck. You will need to clean around the area to be repaired (and the patch), apply primer solvent to both surfaces and then quickly apply the glue solvent to both surfaces. You need a hand roller and heavy objects to place over the patch to apply pressure until it has set a day later. Do this on a warm day.

You will want to use proper heavy duty patch material (hard to find). This I found is available from above ground pool repair suppliers or even better,where they make truck side tarp curtains (the ones which often have printed advertising material on them). I got (free) off-cuts. This solvent method is not as strong as the thermal weld, but it is good enough for me for patch work.

Door Handles

The ex ADF vehicles do not have key locking door handles. Its illegal here not to lock your vehicle if you move more than a certain distance away from it.  I purchased modern Febi model 17254 door handles.  I then had both handles keyed alike.  Handles fitted fine (just) but mods were needed as described below. The new handle is in  foreground of the large photo. Its squarer in shape, but otherwise everything lines up ok. New lockable door handles are not something to tackle without a lot of patience, as you will likely need to remove the locking mechanism and handle about 10 times (trial and error and lots of cussing perhaps). The trick is to undo the lowest screw on the window glass guide channel (inside the door) so that you can flex the channel towards the outer skin of the door enough to twist the mechanism around it (a terrible job). My mechanisms needed to be modified, so as to remove part of the push tongue and to change the cam lobes. Whilst you can grind away the push tongue using an air operated die grinder tool from the outside with the door handle off, its not possible to alter the cams this way.  First picture in gallery is the completed handle on door. Looks great. Second picture shows the push tongue where the lower portion needs to be ground off. I discovered that the new handle plunger (key barrel) does not push inwards quite enough to reliably unlock the mechanism. No amount of screw adjustment on the rear of the new handle will fix this. I also had to adjust the shape of the cams in the mechanism so that the lock releases with less plunge of the handle plunger (very fiddly and you need a small die grinder burr bit).  Note: you may find that there is enough plunger depth to unlock your mechanism and you might not need to adjust the cams. I did have to adjust the cams. You may have to also take the door handle on and off a dozen times to get the depth adjustment screw on the rear of the door handle barrel just right. Too long and the barrel will not rotate (hits the side of the push tongue), too short and it will not push in far enough to release the mechanism fully. I ground off about the lower 1/3 of the push tongue. The reason being: The new handle button when pushed in (without the key), needs to find clear space behind it and not come into contact with the tongue. When the key is in, it is rotated first (the only thing the key does, is allow the barrel to be rotated) and then when the button is pushed in, this time it comes into contact with the upper portion of the tongue that is left in place. As I said, it was all trial and error to get the new handles to work with the old door mechanism. 

However, there is a safety risk in fitting these lockable handles, in that it is not possible to open the door from the outside without a key. If the door slams shut from the wind and the keys are in the ignition, one has a problem (hence probably a good idea to fit a small key safe hidden somewhere on the outside of the vehicle). Also, if you are in a vehicle accident, the emergency services will nor be able to open the door from the outside. This is a risk you will have to decide on.

In retrospect, I should have left the handles and mechanisms alone, and fitted separate slide bolt locks on the lower outside of the door OR if someone is selling proper lockable like-for-like replacements, go for it.


Crane for spare wheel

I needed a small crane to lift the spare wheel up and down from the back of the tray. I looked at a lot of cheap Chinese and local model cranes on ebay etc. All were heavy. The only light-weight version I could find was the Spitz-Lift, but expensive compared to some other heavy steel versions. Picture below shows my testing it on the spare wheel. Its installed on the back tray temporarily. Whilst it is expensive, this brand/model is so lightweight, one person can carry it folded up. If you wanted to get carried away, you could buy 4 side mount sockets and mount one in each corner of the tray.

I was carting around one of the steel wheels as the spare (at least for a while).  However, the steel wheel has a ~10mm thick rim and the vehicle is now set up with studs that suit the thicker alloy rim material (20mm).  I would also need to fit spacers to allow the steel rim to fit the vehicle. Was a waste of time.

A negative issue with using the odd steel wheel as a spare, is that its apparently not legal to drive with odd wheels on the front. I would need to carry 2 spares to ensure that both front are the same. Testing of the crane on the steel wheel shown below at rear of tray (temporary position for test). Is fine for the lighter steel wheel. I eventually purchased an alloy spare wheel.  The Spitz-Lift had trouble lifting it and the post was flexing. It's not quite strong enough for these wheels with run flats, so I strengthened the crane by installing a steel inner tube in the cranes vertical tube.

Front Mudguards

I discovered the hard way, that the larger tyres on the Hutchinson rims with Michelin 395/85R20 XZL rub on both the front mud flaps and the rear trailing edge of the steel front mudguards, at full lock. If I had know about this before I had the guards re-rolled and painted, I would have done the following:

  • Had the guards re-rolled such that the rear 1/3 is at a larger diameter such that the trailing edge is now a further 1 to 1.5" rearward.
  • Moved the top step bracket (where it attached to the body, further backwards). See middle photo where I moved the step bracket back about 20mm by drilling new mounting holes in it, rather than putting new nutserts in the cab (20mm however, was not quite enough in my case). 

After moving the brackets back 20mm, the mudflap bolt heads still rubbed on the tyre, so I took the lazy approach, with a solution that is not ideal.  I minimised the head of the bolts sticking out on the inside of the mudflap by cutting off the hex heads and welding a flat washer to M8 rod in order to pull the rubber mudguard further back away from the tyre. It means that the mud flaps (and thus the cabin) are now tied to the lower step and the arrangement is more rigid than I would have liked. But may do the job. In the end, I might have to do a body or chassis lift to sort it out. 


There are strict procedures for towing. For the ex ADF U1700, if towing by raising one end (with the other end on the road), part of the gearbox will be spinning and it needs lubrication. Apparently the gearbox mechanical oil pump cannot work with the gearbox in neutral (its driven by the input shaft) . Therefore, I am advised by forum members that the gearbox will need to be in gear whilst towing. However, for the gearbox to be in forward or reverse, the engine will need to be disconnected from the gearbox, otherwise the engine will be spun via the driveshaft (risking damage to the engine and cause a dragging load on the tow vehicle). Apparently if towing forward, then the gearlever must be in forward. If towing backwards the gearlever must be in reverse (so that the oil pump rotates in the right direction).

My vehicle can only be towed (by raising one end) for up to 1km (with a speed restriction) without first removing/disconnecting the drive shaft (between clutch and gearbox). Refer to the specific requirements and restrictions for your vehicle before towing. On my vehicle, only the gearbox end need be disconnected providing that one can safely tie the loose end of the driveshaft up out of the way (maybe take some coat-hanger wire with you to do this). The driveshaft cover (M8 bolts) needs first removing in order to get to the gearbox end of the driveshaft flange. Easier said than done if my layout is any example (lots of new stuff in the way), but feasible to do in theory. Some forum members claim that the tow truck drivers usually do this disconnection for you, but I'd make sure you can do it. If you cannot safely tow by lifting one end, a low loader (the lowest is typically 900mm in height) is likely required. Note: There are all sorts of height restrictions on overall height of a vehicle particularly when the mog ison the rear of a low loader/tray, as well as time of day and route permits. 

Roof Lining

Roof lining board was warped, broken into pieces and badly water damaged. I had to rejoin sections using glass fibre and resin, replace a panel and rivet it all together. I sealed the particle board with paint then had an upholsterer replace the fabric. Purchased a new ceiling light from England (best price). Its at least a 2 person job to install safely due to fragility.

Engine Belts (AVX13 Notched Vee belt)

The below length belts are for my ADF Unimog. If you change for example: generator to alternator or add air conditioning compressor etc, then belts will be different. I have tried many different lengths, and here is what I ended up with: 

  • Air Pump 1335
  • Steering Pump 950
  • Fan Spindle Drive 1625
  • Water Pump 1360
  • Generator 1125
  • Radiator Fan 1125 

Some good brands are: Optibelt (Marathon X) and Gates (Green Stripe). Note that I have fitted some shorter than standard belts, in order to reduce belt slap and whilst difficult to get them on (air comp belt is very tight to get on), they allow some decent tension to be achieved.

Rear Tray Rot Issue

The cargo style has a plywood tray, with the last 1/3 covered with aluminium checkerplate. Its highly likely that there will be portions rotted on most vehicles of this vintage. I found rot in patches under the aluminium, around the shipping container pins and along the head board. I have cut them out, except for those under the checkerplate. As I'm not going to have any significant load on the plywood, I don't need to replace all of it (yet). I have sealed all around the top edges and screws with high quality flexible water based outdoor paint and polyurethane glue to give some further life. At some point in time, it will all need replacing. Where the plywood sits on the headboard tray wall (3rd photo) water is trapped, and there was rust starting. Luckily I was able to catch it in time.

Swivel Table for Camper

Found that the most roust table support is the Lagun Leg ($340) where a swivel arrangement is required. Then initially had a custom stone table top made to suit it (~$400). Arrived chipped and was far too heavy at 26kg for the Lagun table support system which uses plastic swivel points. Had to scrap that idea. Then looked at marine timber tables. All too expensive. The cost effective answer was facing me all along. Buy an over-bed disability table as used in nursing homes. Cut an aluminium plate and weld a 1" shaft to it. Removed the table top from the over bed frame, discarded the frame. A waste, but the cheapest solution at about $120. One can buy just the table tops in the USA, but not in Australia. 

Cabin Mounts & Suspension

I was having oscillation problems initiated by undulations in the road at certain speeds. Suggestions ranged from torque tube issues, to gearbox, to clutch, to water in the tyres, to out of balance tyres, to run flats, to shock absorbers, to tyre pressures to ..............

Cabin Mounts: After much FaceBook and BenzWorld forum discussions, I found that a lot of other people have had similar issues, but no answers. Ben Nash from MogCentral, mentioned a similar problem that he has diagnosed in the past: Worn cab mounts allowing the cabin to bounce and thus affect the accelerator linkages which are fixed to the cabin, thus starting an out of control oscillation with engine speed going up and down as the cab moves up and down. So I raised the cabin and inspected the rubber cab mounts. The rear looked fine but I was unsure about the front. I started to undo them (10mm) but someone had used thread locker and they were also rusted in. On each side, 3 of the 4 came out over a few days work, the 4 th nut broke loose inside the floor box section (the 4 nuts are welded captive inside the floor box section and not accessible). So I cut off the failed nut/bolt on each side. I was going to try a nutsert to remediate it, but not enough depth, so I glued a large triangle shaped nut inside that cannot rotate. Not ideal but should do the job ok.

Once I got the mounts out, there was lots of rust powder inside because nowhere for water to escape to. Nothing serious but the entire inside of the box section seems never to have been painted so I treated it all with fish oil inside (as I hope never to go there again). Note: I also treat all bolt threads with anti-seize before I insert them, just in case someone needs to access them again. 

Had to clean the threads out with a tap, as they were full of rust and thread locker.

I got the pitch wrong the first time I ordered the replacement M10 x 35mm bolts. They are 1.5 but I ordered fine (1.25 by mistake). I think I'm getting old, making stupid mistakes.

The above photo shows where the rubber had come away from the metal. Both sides of both mounts were like this.

Shock Absorbers: I  replaced the old shock absorbers with 'Iron Man' from Mog Central over my 2021 Christmas break. Most of the 20mm bolts were a nightmare to remove after probably30 odd years. Last picture further below shows one where the bolt/nut was so tight even a 1m bar would not budge it. I had to split the nut by combination of grinder and cold chisel / lump hammer. The rear upper bolts needed a lump hammer to bash them out over many hours. The bolts had corroded slightly thus making them hard to shift. Hint, I found that using a G clamp to squeeze the two webs together slightly made it easier to remove the bolts.  Exhausting work. I ordered replacement class 8.8 bolts with 30mm head from various places on the internet. No one company had the three different lengths. The Army mechanics had waaaay over torques the bolts/nuts (surprise surprise). In fact, the ADF manual states 400Nm. I am of the opinion that this is unnecessarily tight. The shock absorber manufacturer will advise on the bolt torque (which in my case was less than 400Nm). 

A close up photo further below shows how the threaded profile of a bolt is typically worn down in the middle (see middle photo below) from the many miles of hammering from the shockies. Best to replace all bolts at the same time. I found every bolt, bar two (which were newer than the rest), had this wear deformation.

When installing the new shocks, it was almost as hard a job. The upper mount and the lower mounts can be out of alignment slightly, requiring some forceful measures to get the upper and lower bolts in. Make sure the new bolts are of the right length. I had to cut one down as it was 1/2" too long and fouled.

If you have a 'helper' available, I recommend it. It took me at least 8 times as long as it would have taken with 2 people, as the shocks are heavy and the bolts can be very stubborn.

Fan Spindle belt tensioner

The belt tensioner was weak. As its a bit of a job to pull out the spindle and change the rubber tensioner bush, so I decided to also replace the bearings at the same time.  Bearings are quite common. I used SKF 62304-2RS1. The pulleys come off easy enough. Watch out for the small key in each end of the shaft, easy for them to fly out. The fan tensioner bush is very tight to remove or install. Need a strong press. The mob I first took it too, after a month trying said they cannot do it. I then took it to a proper engineering shop in Kirrawee, who did it essentially straight away. They had to machine up a cylinder with a step in it, to push the tensioner out and the new one in. Its a tricky job because the casting is not flat and parallel, so if this if not compensated for, you could end up trying to push the bush in at an odd angle. I have no idea why the bush is so tight, other owners have complained about the same issue. Before you push out the original bush, measure how far the cogged face protrudes out of the casting, so that when you push the new one in, it goes in exactly the same distance as previous. Replaced the idler pulley (shown with yellow cap) at the front also (it was making a slight noise).